首页> 外文OA文献 >Exponential Weighting and Random-Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization
【2h】

Exponential Weighting and Random-Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization

机译:基于指数加权和随机矩阵理论的滤波算法   投资组合优化的金融协方差矩阵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a covariance matrix estimator that both takes into account theheteroskedasticity of financial returns (by using an exponentially weightedmoving average) and reduces the effective dimensionality of the estimation (andhence measurement noise) via techniques borrowed from random matrix theory. Wecalculate the spectrum of large exponentially weighted random matrices (whoseupper band edge needs to be known for the implementation of the estimation)analytically, by a procedure analogous to that used for standard randommatrices. Finally, we illustrate, on empirical data, the superiority of thenewly introduced estimator in a portfolio optimization context over both themethod of exponentially weighted moving averages and the uniformly-weightedrandom-matrix-theory-based filtering.
机译:我们介绍了一种协方差矩阵估计器,该估计器既考虑了财务收益的异方差(通过使用指数加权移动平均值),又通过从随机矩阵理论中借用的技术来降低估计的有效维数(从而降低了测量噪声)。我们通过类似于标准随机矩阵的过程,解析性地计算出大指数加权随机矩阵(需要知道其较高频带边缘才能实现估计)的频谱。最后,在经验数据上,我们说明了在资产组合优化上下文中新引入的估计器相对于指数加权移动平均值方法和基于均匀加权随机矩阵理论的滤波方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号